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ABSTRACT
If G is a finite solvable group and H is a maximal nilpotent subgroup of
G containing F(G), we show that there is a canonical basis P(G|H) of the
space of class functions on G vanishing off any G-conjugate of H which
consists of characters. Via P(G|H) it is possible to partition the irreducible
characters of G into “blocks”. These behave like Brauer p-blocks and a
Fong theory for them can be developed.

1. Introduction

Suppose that G is a finite group and let cf(G) be the space of complex class
functions defined on G. If H is any subgroup of G, we consider the subspace

vef (G| H) = {x € cf(G)| x(g9) = 0 if g does not lie in any G-conjugate of H}.

The dimension of this subspace is the number of conjugacy classes of G meeting
H, and, as can be easily checked,

vef(G | H) = {n%| n € f(H)},

where ¢ denotes the induced class function of 1 to G.

Write Irr(G) for the set of irreducible complex characters of G. We say that a
basis BB of vcf(G | H) is good if it satisfies the following two conditions:

(I) if n € B, then there exists a € Irr(H) such that a® = n; and
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(D) if v € Irr(H), then v = > _nep an7 for uniquely determined nonnegative
integers ay,.

In general, good bases do not necessarily exist. If they exist, however, it is easy
to see that they are necessarily unique. We will denote by P(G | H) the unique
good basis (if it exists) of vcf(G | H).

Once we have our uniquely defined basis P(G | H) for certain H, it is natural
to define linking in the set Irr(G) and study the associated graph (the “blocks”
relative to the subgroup H). We say that x, % € Irr(G) are linked if there exists
n € P{G| H) such that

[x,n # 0 # [v,n).

If H is a Hall p-complement of a p-solvable group G, then there exists P(G | H)
and this is the set of projective indecomposable characters by a celebrated the-
orem of P. Fong. Of course, linking partitions Irr(G) into the Brauer p-blocks.
When H is a Hall m-subgroup of a #-separable group G, then P(G|H) also
exists and is the set of projective indecomposable characters associated to the
Isaacs m-partial characters I,(G). Linking, in this case, partitions Irr{G) into the
Isaacs—Slattery w-blocks.

If G is a finite solvable group and H is a maximal nilpotent subgroup of G
containing F(G), the Fitting subgroup of G (that is, if H is a nilpotent injector
of G), we proved in [5] that P(G|H) exists. If we say that x,¥ € Irr(G) are
N-linked if there exists n € P(G | H) such that

D,m # 0 # (7,

then the N-blocks of G are the connected components in Irr(G) of the graph
defined by N-linking.

It is perhaps surprising that there exists a well behaved theory of N-blocks
which resembles Fong’s theory on p-blocks of p-solvable groups in which the p'-
radical Oy (G) is replaced by the Fitting subgroup F(G) and the p-complements
of G by the nilpotent injectors of G.

The N-blocks of G are inductively described via a “Fong-Reynolds type”
Theorem A and Theorem B below. (Recall that if N « G and 6 € Irr(N),
then Irr(G | 0) is the set of irreducible characters of G lying over 6.)

THEOREM A: Let G be a solvable group, let N be a normal nilpotent subgroup
of G and let B be an N-block of G.
(i) There exists 6 € Irr(N) such that B C Irr(G | 8).
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(ii) IfT is the stabilizer of § in G, then there exists an N-block b of T such that
b C Irr(T]6) and
B = {y° ¢ € b}.
THEOREM B: Let G be a solvable group and let 8 € Irr(F(G)) be G-invariant.
Then Irr(G | 0) is an N-block of G.

Once we have defined N-blocks for every finite solvable group G, a number of
questions naturally appear. We hope that some of them might suggest interesting
problems.

TurOREM C: Suppose that G is a solvable group, let B be an N-block of G and
let H be a nilpotent injector of G. Then

|B| <G : H|.

The analogy between Hall 7-subgroups and nilpotent injectors suggests that
the latter might have some interesting character theory to be developed. The
next result (although not difficult to prove) seems not to have been noticed up
to now.

THEOREM D: Let G be solvable. Then the set of elements of G lying in some
nilpotent injector H of G and |H| are determined in the character table of G.

In order to prove the next result, however, we shall use our results on good
bases.

THEOREM E: Let H be a nilpotent injector of a finite solvable group G. Suppose
that \ and p are linear characters of H. Then \¢ = u€ if and only if A\ = p* for
some z € Ng(H).

2. Inertia groups and injectors

In [8], we developed some theorems which are useful for finding good bases for
the spaces vcf(G| H). In Section 3 below, we will apply these results to the
case where G is solvable and H is a nilpotent injector of G. For proving these
theorems, the following is a key definition.

Suppose that H C G and let N be a normal subgroup of G contained in H.
Let 8 € Trr(N) and write T = I(6) for the stabilizer of § in G. We say that 6 is
H-good (with respect to G) if for every g € G we have that HYNT is contained
in some T-conjugate of HNT.

We recall that if G is a solvable group, then H is a nilpotent injector of
G whenever H N S is a maximal nilpotent subgroup of S for every subnormal
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S < <. It turns out that the nilpotent injectors of G are the maximal nilpotent
subgroups of G containing F{G) and that any two of them are G-conjugate ([4]).

(2.1) THEOREM: Let G be solvable and let N be a nilpotent normal subgroup
of G. Let § € Irr(N) and let T = I(6) be the stabilizer of § in G.
(a) If X is a nilpotent subgroup of T' containing F(T'), then XF(G) is nilpotent.
In particular,

(b) If J is a nilpotent injector of T, then there exists a nilpotent injector H of
G such that HNT = J. In fact, § is H-good (with respect to G) for every
such H.

We will prove Theorem (2.1) by applying the main result of [6].

(2.2) THEOREM: Suppose that J C G and let v € Irr(J) be such that ¢ €
Irt(G). If |G : J| or |J : F(J)| is odd, then F(G)F(J) is nilpotent.

Proof: 'This is Theorem A of [6]. |

Proof of Theorem (2.1): Suppose that F(T) C X C T is a nilpotent subgroup
of T'. First we prove that XF(G) is nilpotent.
Write F' = F(G) and note that

NCFNTCF(T)CX.

Therefore
TNFX =X,

and X is the stabilizer of 8 in FX. Now, if v € Irr(X | 6), it follows that y**
is irreducible by the Clifford correspondence. Since X is nilpotent, we have that
F(FX)X is nilpotent by Theorem (2.2). Hence, FX is nilpotent, as desired. In
particular, we deduce that F(FT) = FF(T).

Now, let J be a nilpotent injector of T’ and notice that F'J is a nilpotent injector
of FT because it is a maximal nilpotent subgroup containing F(FT) = FF(T).

Now, let FJ C H C G be a maximal nilpotent subgroup of G and note that
H is a nilpotent injector of G. Then J C HNT, and by the maximality of J, we
conclude that HNT = J.

Finally, we prove that 8 is H-good. It suffices to show that if K is any nilpotent
injector of G (that is, if K is any G-conjugate of H), then K N7 is contained in
some T-conjugate of J = HNT. Now, by Theorem 2.c of [4], we have that KNFT
is contained in some nilpotent injector of FT. We have already proved that F'J
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is a nilpotent injector of FT. Thus there exists ¢t € T such that K N FT C FJ*.
Then

KNT=KNTNFTCFJ'INT =JYFNT)=J",
and the proof of the theorem is complete. |

The following example due to M. Isaacs shows that the hypothesis of N being
nilpotent in Theorem (2.1) is necessary.

(2.3) Example: Let @ be isomorphic to Qg and let U = ES be the group of
order 227 obtained by letting a group S of order 2 act on an extraspecial group
E of order 27 and exponent 3 in such a way that S centralizes the center Z of £
and inverts all elements of E/Z. Fix a subgroup K of order 9 in U and note that
K « U and U/K is nonabelian of order 6. Finally, let U act on @ with K in the
kernel of the action and U/K acting faithfully. Let G = QU be the semidirect
product. Note that K <« G and G/K can be taken to be isomorphic to GL(2, 3).

Now let L be a subgroup of order 9 in E different from K and write L = ZY,
where Y has order 3 and is inverted by S. Note that L <« U so that QL <« G.
Write N = QL and A = QY and note that N hasindex 6 in G. Also, N = Z x A
and A is isomorphic to SL(2,3) and is normalized by S. Let ¢ be a faithful
irreducible character of A of degree 2 such that ¢ is stabilized by S. (This is
possible because A has exactly three irreducible faithful characters of degree 2.)
Define # € Irr(N) by 6 = A x ¢, where )\ is a nontrivial linear character of Z.

Let T be the stabilizer of # in G. We claim that T'= NS. Of course, N C T.
To see that S stabilizes 8, it suffices to observe that Z is central in G so that S
fixes A. (We already know that S fixes ¢.) We now know that T contains NS
and since NV S has index 3 in & it suffices to show that T < G. In fact, let z € K
with z € Z and let y be a generator of Y. Then y* = yz for some nonidentity
element z of Z. Thus 6(y*) = A(2)0(y) and A(z) # 1. Also, 8(y) = ¢(y) # 0,
and it follows that x does not fix 6.

Now T is the direct product of AS and Z. Thus F(T) = QZ. The group
Q)SZ is thus nilpotent and hence is in a nilpotent injector of T'. In particular,
S is contained in a nilpotent injector of 7. But S cannot be contained in any
nilpotent injector of G because otherwise it would centralize the 2'-part of the
Fitting subgroup of G, and yet S does not centralize K.

3. Review of good bases

For the reader’s convenience, we review in this section some of the results in [8].
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If G is a finite group, we denote by cf(G) the space of complex class functions
defined on G. We fix H a subgroup of G. We let

vef (G| H) = {a € cf(G)| a(z) =0 for z € G — U HY}.
geG
It is easy to check (see Lemma (2.1) of [8]) that

vef (G H) = {af] o € cf(H)}.

Now, let N be a normal subgroup of G contained in H. If § € Irr(N), then
Irr(G | 0) is the set of irreducible constituents of 6. Also, cf(G |6) is the C-span
of the set Irr{G | 6). If © is a complete set of representatives of the orbits of the
action of G on Irr(N), then it is clear that

of(G) = P cf(G9).

6€©

We denote
vef(G | H,0) = vef (G| H) nef(G9).
(3.1) LEMMA: Let N< G and let N C H C G. Let © be a complete set of
representatives of the action of G on Irr(N). Then
vef(G | H) = @) vef (G| H,0).

660

Proof: This is Lemma (2.2) of [8]. |

Next is one of the reasons why H-good characters are important for us.

(3.2) LEMMA: Suppose that N is a normal subgroup of G contained in H C
G, let 6 € Irr(N) be H-good and let T = Ig(6). Then induction defines an
isomorphism vcf(T'| T N H,0) —» vef(G | H, ).

Proof: This is Lemma (2.4) of (8]. |

A basis B of vef(G | H) is good if it satisfies the following two conditions:

(I) If 5 € B, then there exists o € Irr(H) such that ¢ = n; and

(D) if 4 € Irr(H), then v¢ = e Oy for uniquely determined nonnegative
integers a,.

1t is easy to show that good bases are necessarily unique (Theorem (2.2) of [5])
and we will denote by P(G | H) the unique good basis (if it exists) of vef(G | H).
Note that P(G|H) = P(G| H?) for every g € G.

It is not in general true that good bases exist for every subgroup H of G. It is
straightforward to check that good bases exist whenever H < G. However, this is
already false for H< aG. Perhaps this is a good place to write down an example.
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(3.3) Example: Suppose that S is a group of order 2 which interchanges two
Klein four groups K. Let G = (K x K)S be the semidirect product and let
H = {z) x K where 1 # z € K. Then the 8 characters {\®| A € Irr(H)} are
all distinct. By degrees, all of them should be inside P(G|H) (if this exists).
However, there are only 7 conjugacy classes of G meeting H and it follows that
the dimension of the space vef(G | H) is 7. This is not possible.

Let N< G with N C H C G, and let 9 € Irr(N). A basis B of vef(G | H,0) is
good if it satisfies the following conditions:

(I) if n € B, then there exists a € Irr(H | 6) such that o® = 7; and

(D) ify € Irr(H | §), then ¢ = an 5 Gn7 for uniquely determined nonnegative
integers a,.

The same elementary argument shows that good bases “over” irreducible char-
acters are necessarily unique. We will denote by P(G| H,#) the unique good
basis (if it exists) of vef(G | H, ).

We will need the “Clifford correspondence” for good bases over normal
irreducible constituents.

(3.4) LEMMA: Suppose that N <« G is contained in H C G. Let 0 € Irt(N) be
H-good and let T = Iz(6). If P(T| TN H,8) is a good basis of vef (T | T N H, 0),
then {n®|n € P(T|T N H,8)} is a good basis of vcf(G | H, ).

Proof: This is Lemma (2.10) of [8]. |

Finally, we will need that good bases exist in the following case. {We refer the
reader to [2] for a review of @-theory, the Isaacs set I.(G) and the definition of
Fong characters.)

(3.5) LEMMA: Let G be a m-separable group and let H be a Hall m-subgroup of
G. Let Z be a central n'-subgroup of G and let X € Irr(Z). For each ¢ € 1,(G),
let o, € Irr(H) be a Fong character for ¢. Then P(G|HZ,\) = {(ap, x \)C| 9 €
I.(G)}. Furthermore,

\J P(GIHZ X =P(G|HZ).
Aelrr(Z)

Proof: The first part easily follows from Theorem (5.3) of [8]. The second part
follows from Lemma. (2.9) of [8]. |
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4. Proof of Theorem A

The next result was the main theorem of [5].

{4.1) THEOREM: Suppose that G is solvable and let H be any nilpotent injector
of G. Then there exists the unique basis P(G | H) of vcf(G | H).

Proof: This is Theorem (3.1} of [5] with the notation of Section 3. |
We need to strengthen Theorem (4.1) a bit.

(4.2) THEOREM: Suppose that G is solvable and let H be any nilpotent injector
of G. Let N < G be nilpotent and let 6 € Irr(N) be such that H N I(0) is a
nilpotent injector of I(8). Then

P(G|H)N (G |6) = P(G| H,8).

Proof: By Theorem (2.1), we may find a complete set of representatives ©
(containing 8) of the action of G on Irr(N) such that if v € © then H N Ig(v)
is a nilpotent injector of Ig(v). If n € P(G|H), we claim that there exists a
unique v € O such that i € cf(G|v). We know that there exists o € Irr(H) such
that % = 7. Now, a lies over some v9 for v € © and g € G. Now, if x is an
irreducible constituent of 7 = €, then x lies over a and thus over v9. Hence,
x € Irr(G| v) and the claim follows. Now, by Lemma (2.8) of [8], it follows that
n = +© for some character v of H all of whose irreducible constituents lie over
v. Since n € P(G| H), it follows that -y € Irr(H) by condition (D) of good bases.
We see that there exists a unique v € © such that = v¢ for some 7y € Irr(H | v).
Since
vef(GH) = @vcf G|H,v)
vED

by Lemma (3.1), it easily follows that exactly those n € P(G | H) which lie over
v form the set P(G| H,v). |

Before proving Theorem A, recall that P(G|H) = P(G | HY) for every g € G.
Hence, the N-blocks of G do not depend on the nilpotent injector that we choose.
This is Theorem A of the introduction.

(4.3) THEOREM: Let G be a solvable group, let N be a normal nilpotent sub-
group of G and let B be an N-block of G.
(i) There exists 6 € Irr(N) such that B C Irr(G | 6).
(ii) IfT is the stabilizer of 6 in G, then there exists an N-block b of T such that
b C Irr(T|6) and
B={y%|yeb}.
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Proof: Let B be an N-block of G and fix H a nilpotent injector of G. To show
that all characters of B lie over some § € Irr(NV), it suffices to prove this fact for
any two characters in B which are N-linked. Hence, assume that x, 4 € Irr(G)
are N-linked. Then there exists 7 € P(G | H) such that

Dol # 0 # [, n).

Now, by definition of the good basis P(G | H), there exists o € Irr(H) such that
a® = 1. Since N is normal and nilpotent, we have that N C H. Let 8 € Irr(N)
be an irreducible constituent of ay. Now, since

0 # [x,nl = [x, o] = [x#, o,

we have that y lies over §. For the same reason, i lies over 8. This proves part
(1).

Let T = Ig(#). By Theorem (2.1} (and replacing 6 by some G-conjugate if
necessary), we may assume that TN H is an injector of 7" and that 8 is H-good.

Now, let x € B C Irr(G|0) and, by the Clifford correspondence, let 3 €
Irr(T | ) be such that ¢ = x. Let b be the N-block of ¢». By the first part,
notice that b C Irr(T | 8). We prove that B = {1/ |y € b}.

First, note that the elements in P(G|H) which are used to define N-linking
between the elements of B necessarily lie in ¢f(G |6). By Theorem (4.2), the
N-linking between the elements of B are made by the elements in P(G | H,8).
By the same reason, the N-linking between the elements of b are made by the
elements in P(T|T N H,0). By Lemma (3.4), we have that

{n°In€ P(T|TNH,0)}=P(G|H,H).

G 1Y) = [r,u] for T,p € cf(T|6) by the Clifford correspondence, the

proof of Theorem A easily follows. |

Since [u

5. Characters of central products

We shall need the following elementary result.

(5.1) LEMMA: Suppose that Hy,...,H, are subgroups of G and let Z =
HyN---NHy. Assume that [H;, H;} =1 for i # j and that

G/Z=H/Z x-xH,/Z
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is a direct product. Let A € Irr(Z) and let 0; € Irr(H; | A) for 1 < i < n. Then
there exists a unique x € ;- Irr(G | 6;). In fact,

X(h1-+-hn) = 61(h1) - - Onlhn)

for h; € H;.

If u: X > Y is a group isomorphism, recall that Irr(Y) = {x*|x € Ir(X)},
where x*(z*) = x(z) for z € X.

Proof of Lemma (5.1): Of course, we may assume that n > 2. Consider the
map 7: Hy X ++- x H, = G given by (hy,... ,hy)" = hy1---hy,. Note that 7 is a
surjective group homomorphism. Let N = ker(r). Call x the group isomorphism
H; x ---x Hy/N — G induced by 7. Since Z C Z(G) because n > 2, note that
(8:)z = 6:(1)

Suppose that 1 € Irr(G) lies over 6; for every i. Let £ € Irr(Hy x -+ x H,/N)
be such that ¢* = 1. Then £ = 4 x --- X 7, for some v; € Irr(H;), and we
deduce that ¥(hy--- k) = T{h1) - Yo(hs). Since ¥p, is a multiple of 6;, we
easily deduce that v; = 8; for each i. Therefore, ¥(hy - h,) = 61(h1) - 6.(hy)
and we see that if such a v exists, then it is unique.

Now, let @ = #; X +-- X 0,. It suffices to show that N C ker{(a). Sup-
pose that (hy,...,h,) € N which happens if and only if Ay ---h, = 1. Then
(h1Z) -+ (hnZ) = Z, and we deduce that h; € Z for all 4. Now,

a(hy,...  ha) = 01(h1) - On(hn) = 01(1) - - On(D)A(R1) - - Alhn)
= a()A(hy - hy) = a(1).
Now, x = a* satisfies the conclusions of the lemma. |

Under the hypothesis and notation of Lemma, (5.1), we will write

X:HI/\"'Aan:/\Bi-

6. Proof of Theorems B and C

In several proofs throughout this paper, we will distinguish two cases, according
to whether or not the nilpotent injector is contained in some proper normal
subgroup of G.
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(6.1) LeMMA: Suppose that H is a nilpotent injector of a solvable group G and
assume that H C M « G. Let P(M | H) be the good basis of vcf(M | H) and let
C be a complete set of representatives of the orbits of Ng(H) on its action on
P(M | H). Then {n®|ne€C}=P(G|H).

Proof: The proof of this lemma follows by Lemma (3.2) of [5] and the uniqueness
of good bases. (The fact that G = MNg{H) in this case, follows from the Frattini
argument. ) [ |

We are going to use the next lemma several times.

(6.2) LEMMA: Let H be a m-subgroup of G and let Z be a central n’-subgroup
of G. If a € Irr(H) and A € Irr(Z), then

((ax N pz = %((aG)H X A).

Proof: Let hz€ HZ = H X Z, where h € H and z € Z. Then

(a x N (hz2) = ﬁ Z (o x X)(ghzg™1).

g€G
ghzg—leHZ

Now, by using that Z is central and the uniqueness of the 7-7’ decomposition of
elements, notice that g(hz)g~ € HZ if and only if ghg™! € H. Hence,

1

(@ x )% (hz) = a7zl > alghg™HA(2)
S ;(ghw ) = —((0%)x x N)(h2)
Z] 7] !

as required. L |

We are going to use the construction of the nilpotent injectors due to A. Mann
([4]). Suppose that G is solvable and let F be the Fitting subgroup of G. For
every prime p dividing |F|, let F,» be the p-complement of F' and let S, be any
Sylow p-subgroup of C(F,). Then [S,, S| =1 for p # ¢ and

I s
p|IF}

is a nilpotent injector of G.
If H is a subgroup of G, we denote by H® the normal closure of H in G.
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(6.3) LEMMA: Suppose that G is a solvable group and assume that H is a
nilpotent injector of G with H® = G. For every prime p dividing |H|, let N, =
(H,)®Z(G), where H,, is the Sylow p-subgroup of H. Then H, is a Sylow p-
subgroup of Ny, [Ny, Ng| =1 for p # q and

G/Z(G) = [[ No/2(G)

is a direct product.
Proof: This is Lemma (3.3) of [5]. 1

(6.4) LEMMA: Let G be a solvable group and assume that H is a nilpotent
injector of G with H® = G. Let \ € Irr(Z), where Z = Z(G). Let ap,0, €
Irr(Np | A). Using the notation of Lemma (6.3), we have that A, o, and A\, B,
lie in the same N-block of G if a, and 3, lie in the same N-block of N, for every
.

Proof: First, note that every irreducible character which is N-linked to o, nec-
essarily lies over A (by Theorem A, for instance). By repeating terms, we may
assume that «, and f, are N-linked by a chain of characters of length not de-
pending on p. By using this fact, note that it suffices to show that if o, and G,
are N-linked for each prime p, then /\p ap and /\p B, are N-linked.

We claim that H, X Z, is a nilpotent injector of N,, where Z, is the p-
complement of Z. We know that H N N, is a nilpotent injector of N, < G. Also,
H NN, = Hy(Hy 0 Ny). Now, since [], Np/Z is a direct product, we have that
H, NN, C Z,. Since it is clear that Z,» C Hy N Ny, the claim follows.

Note that by Lemma (5.1) we have that

(/\ ap)H = H(ap)Hp'
P 3
Suppose now that v, € Irr(H,). Now,

(1) [/\ Qp, (H ’Yp)G] = [(/\ p)H, H Yol = [H(ap)Hp7 H’Yp] ZH[(QP)H;;’ Vol-

By Lemma (3.5) (using that H, is a Sylow p-subgroup of N, and the uniqueness
of good bases), we have that there exists v, € Irr(Hp) which is p-Fong in N,
such that c, and 3, are irreducible constituents of (y, x Ap )V7, where Ay is the
p'-part of . Now, by Theorem (3.6) of [5], it suffices to show that

[/\ Qp, (H 'YP)G] #0# [/\ Bp, (H ’YP)G]-
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Since a, lies over <y, x Ay, in particular, we have that o, lies over ,. Hence
[(p) 1, vp] # 0, and by (1) we deduce that A o, and A, §p are N-linked. |

We are ready to prove Theorem B.

(6.5) THEOREM: Let G be a solvable group, let F = F(G) and let § € Irr(F') be
G-invariant. Then Irr(G | 6) is an N-block of G.

Proof: We argue by induction on |G|. Let x,9 € Irr(G|§). We wish to prove
that x and ¢ are connected by a chain of N-linked characters.

Let H be a nilpotent injector of G and assume that H C M < G, where
|[M| < |G|. By Lemma (6.1), note that if 7, € Irr(M) are N-linked, then every
irreducible constituent of 7€ is N-linked with every irreducible constituent of u©.
Since F' = F(M) and @ is M-invariant, the theorem easily follows by induction
in this case.

From now on, we assume that H¢ = G and we use the notation of Lemma (6.3)
and Lemma (6.4). Write Z = Z(G) and let A € Irr(Z) be the unique irreducible
constituent of ;. Assume that N, < G for every prime p dividing |F|. Let x,
be the unique irreducible constituent of x, and let ¢, be the unique irreducible
constituent of yn,. Using the notation of Section 5, note that x = A, xp and
P = Ap ¢p~

By using Lemma (6.3), it is clear that F(N,) = F, X Z,/, where Z is the
p-complement of Z and F), is the Sylow p-subgroup of F. Also, H, X Z, is a
nilpotent injector of N, (see the second paragraph of the proof of Lemma (6.4)).

Write 8 =[]0, where 8, € Irr(F,). Now, notice that each x, and ¢, lie over
), because x and 1 lie over 6, and thus, over 8,. Also, if Ay is the p’-part of
A, note that x, and 1, lie over A, because x and ¢ lie over A and thus over
Ap. Now, xplhz) = dp{2)xp(h) for A € H, and 2z € Z, and it easily follows
that x, (and %) lie over 8, x Ay Since 8, x A, is G-invariant, by induction we
deduce that x, and 4, lie in the same N-block for every prime p. In this case,
by applying Lemma (6.4), we are done.

We may assume, therefore, that N, = G for some prime p dividing |F|. In this
case, the nilpotent injectors of G are P x Z,,, where P is a Sylow p-subgroup of
G. Also, F = Fy, X Zy.

Now, we apply the main results of [9]. If §,{ € Irr(G), we write § <, £ if there
exists a Fong character a € Irr(P) such that § and & are irreducible constituents
of a®. (By Corollary (2.5) of [2], this provides the same p-linking as defined by
M. Slattery in Section 2 of [9].) Since x and 9 lie over 8p, F, = O,(G) and
8, is G-invariant, by Theorem (2.8) of [9], it follows that there exists a chain of
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irreducible characters 7; € Irr(G)
X=Top&p Tl Sp - Op T p Top1 =P

and Fong characters ¢; € Irr(P) such that 7; and 7;,, are irreducible constituents
of aiG for 0 <i<s. Thus

[af,af ] #0 for0<i<s—1
Now, by applying Lemma (6.2), we have that

(e % Ap)%, (inn X Ap) %] = [((@i X Ap)F)pxz,, Qivt X Apr]

1 1 1
= (@) p X Ay aigr X Ap] = = [(0f ) p, cup1] = == [of 0l ] #0
IZP'I[ P i+ P |Zp’l[ i+ ] IZP'I[ +l]

for 0 < ¢ < s—1. Now, we have that there exist common irreducible constituents
& € Irr(G) of (a; x Ap) and (@ig1 X Ap)C for 0 <4 < s — 1. Also, recall that
x = To lies over ag and A, and therefore, x lies over ag x Ay. By the same
argument, 1 is an irreducible constituent of (as x Ay)®. Now (using Lemma
(3.5)), we deduce that x,&,&1,...,&—1,% is a chain of N-linked characters.
This proves the theorem. |

Next is Theorem C of the introduction. Of course, it is the analog of the
k(B)-conjecture for N-blocks.

(6.6) THEOREM: Suppose that G is a solvable group, let B be an N-block of G
and let H be a nilpotent injector of G. Then

BI <G : HI.

Proof: 'We argue by induction on |G].

Let F = F(G). By Theorem A, there exists § € Irr(F) and an N-block b of
T = Ig(0) such that B C Irr(G | 8), b C Irr(T'|0) and B = {¢© |4 € b}. By the
uniqueness in the Clifford correspondence, note that |B| = |b].

Let J be a nilpotent injector of T'. By Theorem (2.1), there exists a G-conjugate
K of H such that KNT = J.

Assume first that T < G. Then, by the inductive hypothesis, we will have that

Bl = <|T:J|=|T:KNT|<|G:K|=|G: H]|,

as desired.
Hence, we may assume that T' = G. In this case, by Theorem B we have that
B =Trr(G6). Then |B| < |G : H| by Corollary B of [1]. |
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7. Nilpotent injectors in the character table

If K is a conjugacy class of G and = is a set of primes, then K, denotes the
conjugacy class of x,, where z is any element of K.

(7.1) LEMMA: If K is a conjugacy class of G, then the character table of G
uniquely determines K.

Proof: Let p be the set of prime divisors of the order of z € K. By Higman’s
theorem (8.21) of [3], we know that the character table of G determines p.
Certainly, we may assume that = C p.

We argue by induction of |p|. If |p| = 0, then z = 1 and the lemma is trivially
true. If # = p, then K, = K, = K and the lemma is also true. So, we may find
aprimepe€p—m. Let o =p—{p}. If L =K,, then L, = K. By induction,
therefore, it suffices to show that the character table of G determines K.

Now, let pR C M C R be a maximal ideal of the ring of algebraic integers R.
Let T be any conjugacy class of p’-elements of G (all of them are determined by
the character table of G) and let y € T'. By Theorem (8.20) of [3], we know that
T = K, if and only if

x(z) = x(y) mod M

for every x € Irr(G). Since the latter equation can be determined from the
character table, the proof of the lemma is complete. |

(7.2) LEMMA: Let K be the conjugacy class of x € G, where z is a 7'-element.
Let N be a normal w-subgroup of G. Then

erlrr(G) Ix ()1

K CCg(N) iff > |x@)= V]

XEIrE(G)
NCker(x)

Proof: By using the orthogonality relations, we have to prove that

K CCg(N) iff |Cq/n(zN)| = ‘Cﬁv(r)‘.

Assume first that

<N = [Calo)]
|Cq/n(zN)| = N
Then
Sotal _ _ Co()]
ICn(2)] |Cs(z)/Cn(z)] = |Cq(z)N/N| < |Cqn(zN)| = —ﬁ\fl—’

and we deduce that Cy(z) = N.
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Conversely, assume that N C Cg(z). Then yN € Cg/n(zN) if and only if
ZYN = zN if and only if ¥ = an for some n € N. Since [z,N] =1, z is a
n’-element and N is a m-group, we deduce that yN € Cg/n(zN) if and only if
z¥ = z. Hence

Cg/N(xN) = CG(:IZ)/N
and the proof of the lemma is complete. |

(7.3) COROLLARY: Let N be a normal m-subgroup of G. Then the character
table of G determines O™ {Cg(N)).

Proof: Let Ki,...,K; be the conjugacy classes of G consisting of n’-elements
centralizing N. (These are determined by the character table of G by applying
Higman’s theorem (8.21) and Lemma (7.2).) Let

= () L=(K,...,Ky).

LaG,
K;CL

We claim that M (which is determined by the character table of G) is exactly
O™ (C¢(N)). Since K; C O™(Cg(N)), it is clear that M C O(Cg(N)). On the
other hand, if L is a conjugacy class of C¢(N) consisting of n’-elements, then L
is contained in some K;. Therefore, M contains all conjugacy classes of Cg(N)
consisting of 7’-elements. Hence Co{N)/M is a m-group and therefore

O0™(Cg(N)) € M,

as desired. [ |
Next is Theorem D of the introduction.

(7.4) COROLLARY: Let G be a solvable group and let H be a nilpotent injector
of G. Then the character table of G determines the set

U #
g€eqG
and |H].

Proof: We know that the character table of G determines O,(G) for every prime
p. Hence, it also determines Fj, the p-complement of F' = F(G). By Corollary
(7.3), it also determines OP (Cg(F,)). Since

|H| = ] 10” (Ca(Fp))ly,
of|F|
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the second part easily follows. Also, since every conjugacy class of G meets H if
and only if K, C or {Cq(Fp)), the proof of the corollary is complete by applying
Lemma (7.1) and (7.3). |

8. Proof of Theorem E

This is Theorem E of the introduction.

(8.1) THEOREM: Let H be a nilpotent injector of a solvable group G. Suppose
that X and . are linear characters of H. Then A¢ = € if and only if \ = u® for
some x € Ng(H}.

Proof: We argue by induction on |G|. Write F' = F(G).

By degrees and condition (D) of good bases, notice that A% € P(G | H).

Suppose that H C M <« G. Then G = MNg(H) by the Frattini argument.
Also, (A% = ((AWM))p is a sum of Ng(H)-conjugates of AM by Mackey’s
theorem. By the same argument, (u%)y is a sum of N (H)-conjugates of ™.
By the second paragraph of this proof, note that A and p™ (and therefore
every N¢(H)-conjugate) lie in P(M | H). Since (A\®)a = (%) ps, by the linear
independence of P(M | H) it follows that AM = (u™)® for some z € Ng(H).
Now,

)\M — (uac)M

and by induction we deduce that A and u* are N (H)-conjugate. This proves
the theorem in this case.

So we may assume that H® = G. We use the notation of Lemma (6.3). Now,

write
A=T] %
P

where X, € Irr(H,) is the p-part of A for the primes p dividing |F|. Also, write
p=T] e
p
By Lemma (3.4) of [5], we have that
1
((H )‘P)G>H = lZlngl H()‘;)VP)H,,’
P P

where n is the number of different primes dividing |F|. Since A¢ = u€, we deduce
that

APV a, = (1) H,.-
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Then

Np _ N,
Ap? = by

for every p dividing |F|. Since H, is a Sylow p-subgroup of N,, by Isaacs’
Corollary (6.1) of [2], we deduce that there exists x, € Ny, (H}) such that

(Ap)™" = pp.

Since [N, Ng| = 1 for g # p, notice that
112 € No(H)
P

is such that
AL =

as desired. [ |

9. Final remarks
If H is a nilpotent injector of a solvable group G, put

G*= ) H?
geG

and let ¢f(G°) be the space of complex class functions G — C.

Is there some canonical basis of c¢f(G®)? In this section we discuss this and
some other natural questions.

First of all, it is clear that

dim(cf(G®)) = dim(vef(G | H)).
If ¢,0 € cf(G°) U cf(G), we write

0, 0]° = |1?| " o)),

€GO
Note that
[, 1% cf(G®) x vef(G|H) — C

is a complex hermitian bilinear form. Furthermore, this form is non-degenerate.
(See Section 3 of [8].) It follows that given the basis P(G|H) = {m,... ,m}
there exists a unique basis I(G| H) = {¢1,- .. ,px} of cf(G°) satisfying

[pirms]® = 6: 5.
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If ¢ € I(G| H), then we denote by ®,, the unique element in P(G'| H) such that

[‘I><p7ﬂ]0 = 5%#

for p € I{G | H).
If x € cf(G), let us denote by x° the restriction of x to G°.

(9.1) THEOREM: Suppose that G is solvable and let H be a nilpotent injector
of G. If x is a character of G, then

X\ = z dxep

wEI(G| H)

for uniquely determined nonnegative integers d,.,. Furthermore,

dyp = [®y, X]-
Proof: This is Theorem (3.1) and Lemma (3.2) of [8]. n

In some sense, it is reasonable to view the basis [(G|H) as the set of
“irreducible Brauer characters” of G with respect to H, being the integers d,.,,
the “decomposition numbers,” and the elements of P(G | H) as the “projective
indecomposable characters.”

First, we see that there is no possible “Fong-Swan” theorem for I{G | H).

(9.2) Example: Suppose that V is the direct product of two groups of order 3.
Let D be the dihedral group of order 8 and center Z. Then D/Z acts faithfully
on V. Let G = VD be the semidirect product. In this case, F=F(G) =V x Z
is also the nilpotent injector of G. Now, let # = 1y x A, where 1 # X € Irr(Z).
It is easy to check that Irr(G | 8) = {x}, where x is the unique extension of the
unique nonlinear character of D containing V in its kernel. It is easy to check
that 8 € I(G | H) is not liftable.

For ¢, € I(G| H), we define the Cartan invariants as

Cop = Z dyplyn = [Pg, ).
x€Irr(G)

(9.3) THEOREM: Suppose that G is solvable and let H be a nilpotent injector
of G.

(a) The matrix

D= (dX&P)xEIrr(G),soel(G | H)
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has rank |I{G| H)|. Hence, C = D"D is invertible.
(b) IT =(vp0)psecricimy =C " and x,¢ € Irr(G), then

[X’ T/)]O = Z [(I)‘P’X][<I)971/)]7<p9~

©,0€1(G | H)
Proof: The matrix
D = (dxp)xetre(G) el (G| H)
is the matrix of the linear surjective restriction map %: c¢f(G) — cf(G°) with
respect to the bases Irr(G) and I(G| H). Then part (a) follows by elementary

linear algebra.

Now, write C = (c<p9)«p,9€I(G|H)~ Then

5<p9 = ‘P7 ‘I)o = Z dxo[go,
xElrr(G)
- Z Z dyodyuo, p)° = Z [0, ul%c e
x€Ilrr(G) pel(G| H) we€l(G| H)

This proves that
I = (.0 se1(6 1 1)
Part (b) easily follows from this. ]

If x, % € Irr(G), note that

Dol = = ) x(@)(z)

1
Gl 22,
can be read off from the character table of G by Corollary (7.4). It is natural to
study the graph associated to the linking

x e i [x, 9]’ #0.

If GO is the set of p-regular elements of any finite group G (where p is a prime),
then the connected components of this graph are the Brauer p-blocks of G. (See
Theorem (3.19) of [7].) Also, if G° is the set of m-elements of a m-separable
group G, then the connected components are the Isaacs-Slattery 7-blocks. (See
Theorem (2.2} of [9].)

In our case, it is not true that the connected components of the graph are the
N-blocks, and we will provide an example below.
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Suppose that B is an N-block of G and let H be a nilpotent injector of G.
We know that x and ¢ are N-linked if and only if there exists ¢ € I(G|H)
such that dy, # 0 # dy,. We may partition I(G| H) into blocks. If B is an
N-block, then I(B|H) = {¢ € I(G|H)| dy, # 0 for some x € B}. Notice that
the decomposition matrix has a diagonal block form if we arrange the ordinary
characters and the elements of (G| H) in N-blocks. Furthermore, C (and I')
have also diagonal block form.

(9.4) LEMMA: Let x,9 € Irr(G). If [x,9]° # 0, then x and 1 lie in the same
N-block of G.

Proof: By Theorem (9.3.b), we have that there exist ¢,8 € I(G | H) such that

dypdpoVps # 0.

Hence, ¢ and @ lie in the same N-block B of G by the comments preceding
the statement of this lemma. Hence, x,1% € B and the proof of the lemma is
complete. |

(9.5) Example: Let S = SL(2,3) and Z = Z(SL(2,3)). Now, suppose that S/Z
acts faithfully on some GF(3)-module V. Let G = V'S be the semidirect product.
Note that F(G) = F =V x Z. Also, the nilpotent injectors of G are of the form
P x Z, where P € Syl;(G). Hence G° = Ugeg P?Z are the elements of G whose
2-part is in Z.

Now, let 1 #£ A € Irr(Z) and let 8 = 1y x A. Note that 6 is G-invariant, and
therefore, that Irr(G | 4) is an N-block by Theorem B.

It is clear that restriction of characters defines a bijection

Irr(G68) — Irr (S| N).

Recall that Irr(S|A) = {x1, X2, x3}- These are faithful characters of S of degree
2 vanishing on the elements of S of order 4. Now, let Irr(G | 8) = {X1, X2, X3} be
their respective extensions.

We claim that each ¥; vanishes off G°. To see this, let ¢ € G — G°. Consider
the isomorphism ¢ : § — G/V given by s — sV. Suppose that 0o(g2V) = 2. Then
g2V = p(z) = 2V, where z is the unique element of order 2 of S. Then g, = zv
for some v € V. Hence g = g293 = zvgz. Since vgs € V{gs) is contained in some
Sylow 3-subgroup of G, we will conclude that g € G°, a contradiction. Therefore,
we have that o(g2V) = 4. Hence, o(gV') = 4 since there are not any other type
of elements in SL(2, 3) whose 2-part is 4. Hence, we may write gV = sV, where
s € 5 has order 4. Now, x:(g9) = x:(gV) = xi(sV) = x:i(s) = 0, as claimed.
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Finally, suppose that ¥; is <>-linked to some x € Irr(G). Assume that x; # x.
By Lemma (9.4) and Theorem B, we have that x € Irr(G | 6). Hence, x = X;, for
some j # i. Now, by the last paragraph, we have that

0 # [ X51° = X X51 = 0.
This is a contradiction.
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