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ABSTRACT 

If C is a finite solvable group and H is a maxima] ni]potent subgroup of 

G containing F(G), we show that there is a canonical basis P(GIH ) of the 
space of class functions on G vanishing off any G-conjugate of H which 

consists of characters. Via P(GIH ) it is possible to partition the irreducible 
characters of G into "blocks". These behave like Brauer p-blocks and a 

Fong theory for them can be developed. 

1. I n t r o d u c t i o n  

Suppose that  G is a finite group and let cf(G) be the space of complex class 

functions defined on G. If H is any subgroup of G, we consider the subspace 

vcf(G [ H) = {X ~ cf(G)[ x(g)  = 0 if 9 does not lie in any G-conjugate of H}. 

The dimension of this subspace is the number of conjugacy classes of G meeting 

H,  and, as can be easily checked, 

vcf(G i H) = {~/a[ 77 e cf(H)},  

where ~?a denotes the induced class function of ~? to G. 

Write Irr(G) for the set of irreducible complex characters of G. We say that  a 

basis B of vcf(G [ H) is g o o d  if it satisfies the following two conditions: 

(I) if ~ E B, then there exists a c Irr(H) such that a c = 7; and 
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(D) if ~, E Irr(H), then ,),a = ]~-]n~ anu for uniquely determined nonnegative 

integers a n . 

In general, good bases do not necessarily exist. If they exist, however, it is easy 

to see that they are necessarily unique. We will denote by P(G[ H) the unique 

good basis (if it exists) of vcf(G[ H). 

Once we have our uniquely defined basis P(G I H) for certain H, it is natural 

to define linking in the set Irr(G) and study the associated graph (the "blocks" 

relative to the subgroup H). We say that X, ¢ E Irr(G) are l inked if there exists 

e P(GI H) such that 

7] ¢ 0 ¢ [¢, 7]. 

If H is a Hall p-complement of a p-solvable group G, then there exists P(G I H) 
and this is the set of projective indecomposable characters by a celebrated the- 

orem of P. Fong. Of course, linking partitions Irr(G) into the Brauer p-blocks. 

When H is a Hall ~T-subgroup of a 7r-separable group G, then P ( G I H  ) also 

exists and is the set of projective indecomposable characters associated to the 

Isaacs 7r-partial characters I~(G). Linking, in this case, partitions Irr(G) into the 

Isaacs Slattery ~--blocks. 

If G is a finite solvable group and H is a maximal nilpotent subgroup of G 

containing F(G), the Fitting subgroup of G (that is, if H is a n i l po t en t  in jec to r  

of G), we proved in [5] that P(G I H) exists. If we say that X,~ E Irr(G) are 
N-linked if there exists rj E P(G[ H) such that 

{x, 7] ¢ 0 ¢ 

then the N-blocks of G are the connected components in Irr(G) of the graph 

defined by N-linking. 

It is perhaps surprising that there exists a wel] behaved theory of N-blocks 

which resembles Fong's theory on p-blocks of p-solvable groups in which the p~- 

radical Or, (G) is replaced by the Fitting subgroup F(G) and the/>complements 

of G by the nilpotent injectors of G. 

The N-blocks of G are inductively described via a "Fong-Reynolds type" 

Theorem A and Theorem B below. (Recall that  if N ~ G and 0 E Irr(N), 

then Irr(G [ 0 ) is the set of irreducible characters of G lying over 0.) 

THEOREM A: Let G be a solvable group, let N be a normal nilpotent subgroup 
of G and let B be an N-block of G. 

(i) There exists 0 e Irr(N) such that B C_ Irr(GlO). 
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(ii) I f T  is the stabilizer of O in G, then there exists an N-block b o f T  such that 

b C Irr(T[O) and 

s - {~G I ¢ ~ b}. 

THEOREM B: Let G he a solvable group and let 0 C I r r (F(G))  be G-invariant. 

Then Irr(G ] 0) is an N-block of G. 

Once we have defined N-blocks for every finite solvable group G, a number of 

questions naturally appear. We hope that  some of them might suggest interesting 

problems. 

THEOREM C: Suppose that G is a solvable group, let B be an N-block of G and 

let H be a nilpotent injector of G. Then 

IBI < IG: HI. 

The analogy between Hall 7r-subgroups and nilpotent injectors suggests that  

the latter might have some interesting character theory to be developed. The 

next result (although not difficult to prove) seems not to have been noticed up 

to now. 

THEOREM D: Let G be solvable. Then the set of elements of G lying in some 

nilpotent injector H of G and I H] are determined in the character table of G. 

In order to prove the next result, however, we shall use our results on good 

bases. 

THEOREM E: Let H be a nilpotent injector of a finite solvable group G. Suppose 

that )~ and # are linear characters of H. Then )~C = pC if and only if )~ = #~ for 

some x C N o ( H ) .  

2. Inertia groups and injectors 

In [8], we developed some theorems which are useful for finding good bases for 

the spaces v c f ( G ] H ) .  In Section 3 below, we will apply these results to the 

case where G is solvable and H is a nilpotent injector of G. For proving these 

theorems, the following is a key definition. 

Suppose that  H C_ G and let N be a normal subgroup of G contained in H.  

Let 0 E I r r (N)  and write T = Iv(O) for the stabilizer of 0 in G. We say that  0 is 

H - g o o d  (with respect to G) if for every g E G we have that  H g N T is contained 

in some T-conjugate of H ¢3 T. 

We recall that  if G is a solvable group, then H is a nilpotent injector of 

G whenever H n S is a maximal nilpotent subgroup of S for every subnormal 
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S < < G. It turns out that the nilpotent injectors of G are the maximal nilpotent 

subgroups of G containing F(G) and that any two of them are G-conjugate ([4]). 

(2.1) THEOREM: Let G be solvable and let N be a nilpotent normal subgroup 

of G. Let 0 E Irr(N) and let T = Ia(O) be the stabilizer of O in G. 

(a) I f  X is a nilpotent subgroup o f t  containing F(T),  then XF(G)  is nilpotent. 

In particular, 

F(F(G)T)  = F ( G ) F ( T ) .  

(b) I f  ,I is a nilpotent injector o fT ,  then there exists a nilpotent injector H of 

G such that H n T = J. In fact, 0 is H-good (with respect to G) for every 

such H. 

We will prove Theorem (2.1) by applying the mare result of [6]. 

(2.2) THEOREM: Suppose that J c_ G and let 3' E Irr(J)  be such that 7 a E 

Irr(G). If  IG: JI or [ J :  F(J)]  is odd, then F ( G ) F ( J )  is nilpotent. 

Proof: This is Theorem A of [6]. I 

Proof  of  Theorem (2.1): Suppose that F(T)  C_ X C_ T is a nilpotent subgroup 

of T. First we prove that XF(G)  is nilpotent. 

Write F = F(G) and note that 

N c_ F A T  c_ F(T) c_ X. 

Therefore 
T N F X  = X,  

and X is the stabilizer of 0 in F X .  Now, if 3' E Irr(X I0), it follows that @'x  

is irreducible by the Clifford correspondence. Since X is nilpotent, we have that  

F ( F X ) X  is nilpotent by Theorem (2.2). Hence, F X  is nilpotent, as desired. In 

particular, we deduce that F ( F T )  = FF(T) .  

Now, let J be a nilpotent injector o f T  and notice that F J  is a nilpotent injector 

of F T  because it is a maximal nilpotent subgroup containing F ( F T )  = F F ( T ) .  

Now, let F J  C H C_ G be a maximal nilpotent subgroup of G and note that  

H is a nilpotent injector of G. Then J C_ H N T, and by the maximality of J ,  we 

conclude that H N T = J. 
Finally, we prove that 0 is H-good. It suffices to show that if K is any nilpotent 

injector of G (that is, if K is any G-conjugate of H),  then K A T  is contained in 

some T-conjugate of J = H A T .  Now, by Theorem 2.c of [4], we have that K O F T  

is contained in some nilpotent injector of FT.  We have already proved that F J  
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is a nitpotent injector of FT. Thus there exists t E T such that  K n F T  C F J  t. 

Then 

K A T  ---- K A T N F T  c_ F J  t A T  = J r ( F A T )  = jr, 

and the proof of the theorem is complete. II 

The following example due to M. Isaacs shows that  the hypothesis of N being 

nilpotent in Theorem (2.1) is necessary. 

(2.3) Example: Let Q be isomorphic to Qs and let U = ES be the group of 

order 2 .27  obtained by letting a group S of order 2 act on an extraspecial group 

E of order 27 and exponent 3 in such a way that  S centralizes the center Z of E 

and inverts all elements of E/Z.  Fix a subgroup K of order 9 in U and note that  

K ~ U and U/K is nonabelian of order 6. Finally, let U act on Q with K in the 

kernel of the action and U/K acting faithfully. Let G = QU be the semidirect 

product.  Note that  K < G and G / K  can be taken to be isomorphic to GL(2, 3). 

Now let L be a subgroup of order 9 in E different from K and write L = ZY,  

where Y has order 3 and is inverted by S. Note that  L ,~ U so that  QL <~ G. 

Write N = QL and A = QY and note that  N has index 6 in G. Also, N = Z × A 

and A is isomorphic to SL(2, 3) and is normalized by S. Let ~o be a faithful 

irreducible character of A of degree 2 such that  ~ is stabilized by S. (This is 

possible because A has exactly three irreducible faithful characters of degree 2.) 

Define 8 E I r r (N)  by 8 = ~ × ~, where ~ is a nontrivial linear character of Z. 

Let T be the stabilizer of 8 in G. We claim that  T = NS. Of course, N _C T. 

To see that  S stabilizes 8, it suffices to observe that  Z is central in G so that  S 

fixes ~. (We already know that  S fixes ~o.) We now know that  T contains N S  

and since N S  has index 3 in G it suffices to show that  T < G. In fact, let x C K 

with x ~ Z and let y be a generator of Y. Then y~ = yz for some nonidentity 

element z of Z. Thus 8(y x) = A(z)8(y) and A(z) ¢ 1. Also, 8(y) = ~o(y) ~ 0, 

and it follows that  x does not fix 8. 

Now T is the direct product of AS and Z. Thus F(T)  -- QZ. The group 

QSZ is thus nilpotent and hence is in a nilpotent injector of T. In particular, 

S is contained in a nilpotent injector of T. But S cannot be contained in any 

nilpotent injector of G because otherwise it would centralize the 2~-part of the 

Fit t ing subgroup of G, and yet S does not centralize K.  

3. R e v i e w  o f  g o o d  b a s e s  

For the reader 's  convenience, we review in this section some of the results in [8]. 
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If G is a finite group, we denote by cf(G) the space of complex class functions 

defined on G. We fix H a subgroup of G. We let 

vcf(G I g ) = {c~ C cf(G)l a(x) = 0 for x E G - U Hg}" 
gEG 

It is easy to check (see Lemma (2.1) of [8]) that 

vcf(GI H ) -- {ac[ a • cf(H)}. 

Now, let N be a normal subgroup of G contained in H. If 0 E Irr(N), then 

Irr(G [ 0) is the set of irreducible constituents of 0 C. Also, cf(G ] 0) is the C-span 

of the set Irr(G [ 0). If ~ is a complete set of representatives of the orbits of the 

action of G on Irr(N), then it is clear that 

cf(G) = ( ~  cf(G I 0). 
0EO 

We denote 
vcf (GIH ,0) = vcf (GIH ) N cf(GI0 ). 

(3.1) LEMMA: Let N < G and let N C_ H C_ G. Let 0 be a complete set of 

representatives of the action of G on Irr(N). Then 

vcf(G ] H) = ~ vcf(G I H, 0). 
0E(9 

Proof: This is Lemma (2.2) of [8]. | 

Next is one of the reasons why H-good characters are important for us. 

(3.2) LEMMA: Suppose that N is a normM subgroup of G contained in H C 

G, let 0 E Irr(N) be H-good and let T = IG(O). Then induction defines an 

isomorphism vcf(T I T N H, 0) --+ vcf(G I H, 0). 

Proof." This is Lemma (2.4) of [8]. | 

A basis B of vcf(G I H) is good  if it satisfies the following two conditions: 

(I) If ~7 C B, then there exists a E Irr(H) such that a G = 7; and 

(D) if 3, E Irr(H), then 7 G = Y~eB a ~  for uniquely determined nonnegative 

integers a~. 
It is easy to show that good bases are necessarily unique (Theorem (2.2) of [5]) 

and we will denote by P(G[ H) the unique good basis (if it exists) of vcf(G I H ). 

Note that  P ( G [ H )  = P ( G [ H  g) for every g E G. 
It is not in general true that good bases exist for every subgroup H of G. It is 

straightforward to check that good bases exist whenever H ~ G. However, this is 

already false for H < ,~ G. Perhaps this is a good place to write down an example. 
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(3.3) Example: Suppose that S is a group of order 2 which interchanges two 

Klein four groups K. Let G = (K x K ) S  be the semidirect product and let 

H = (x) x K  where 1 ¢ x E K. Then the 8 characters {AGI A C I r r (g )}  are 

all distinct. By degrees, all of them should be inside P(GI H)  (if this exists). 

However, there are only 7 conjugacy classes of G meeting H and it follows that  

the dimension of the space vcf(G [ H) is 7. This is not possible. 

Let N(3 G with N C_ H C_ G, and let 0 E Irr(N). A basis B of vc f (GIH,  0) is 

g o o d  if it satisfies the following conditions: 

(I) if r/E B, then there exists a E Irr(H 10) such that a a = 7; and 

(D) if'y E I r r (H 10), then 3 'a = ~ v ~ s  arT] for uniquely determined nonnegative 

integers av. 

The same elementary argument shows that good bases "over" irreducible char- 

acters are necessarily unique. We will denote by P(G]H,O)  the unique good 

basis (if it exists) of vcf(G I H, 0). 

We will need tile "Clifford correspondence" for good bases over normal 

irreducible constituents. 

(3.4) LEMMA: Suppose that N ~ G is contained in H C_ G. Let 0 E Irr(N) be 

H-good and let T = Ia  (0). I f  P ( T  I T n H, O) is a good basis of vcf(T I T N H, 0), 

then {Va It] E P ( T I T  n H, 0)} is a good basis of vcf(Gl H, 0). 

Proof: This is Lemma (2.10) of [8]. I 

Finally, we will need that good bases exist in the following case. (We refer the 

reader to [21 for a review of ~r-theory, the Isaacs set I,,(G) and the definition of 

Fong characters.) 

(3.5) LEMMA: Let G be a 7r-separable group and let H be a Hall 7r-subgroup of 

G. Let Z be a central 7r'-subgroup of G and let )~ E Irr(Z). For each qo E I,r(G), 

let a~ E Irr(H) be a Fong character for g). Then P ( G I H Z, ~) = {(a~ x )~)a[ qo E 

I,~ (G) }. Furthermore, 

U P ( G I H Z ' A )  = P ( G I H Z  ). 
AEIrr(Z) 

Proof: The first part easily follows from Theorem (5.3) of [8]. The second part 

follows from Lemma (2.9) of [8]. t 
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4. P r o o f  o f  T h e o r e m  A 

The next result was the main theorem of [5]. 

(4.1) THEOREM: Suppose that G is solvable and let H be any nilpotent injector 

of G. Then there exists the unique basis P(G [ H) of vcf(G [ H). 

Proof: This is Theorem (3.1) of [5] with the notation of Section 3. I 

We need to strengthen Theorem (4.1) a bit. 

(4.2) THEOREM: Suppose that G is solvable and let H be any nilpotent injector 

of G. Let N ~ G be nilpotent and let 0 E Irr(N) be srzch that H M Ia(O) is a 

nilpotent injector of IG(O). Then 

P ( G I H )  M cf(GI0 ) = P(G(H,O).  

Proof: By Theorem (2.1), we may find a complete set of representatives O 

(containing 0) of the action of G on Irr(N) such that if p E O then H A IG(~') 

is a nilpotent injector of It(L,). If rI E P ( G I H  ), we claim that there exists a 

unique ~ E O such that r/E cf(G I ~). We know that there exists a E Irr(H) such 

that  a G - - r / .  Now, c~ lies over some ~9 for ~ E O a n d g  E G. Now, i f x i s a n  

irreducible constituent of r / =  a c,  then X lies over a and thus over ~g. Hence, 

X E Irr(G[ ~) and the claim follows. Now, by Lemma (2.8) of [8], it follows that  

r / - -  3 ,c for some character 3' of H all of whose irreducible constituents lie over 

~. Since r/E P(G [ H), it follows that 3' E Irr(H) by condition (D) of good bases. 

We see that  there exists a unique ~ E O such that ~/= V c for some 3' E I r r (H ] v). 

Since 

vc f (GIU  ) = ~ vcf(GI u , u )  
L, EO 

by Lemma (3.1), it easily follows that exactly those 77 E P(G] H) which lie over 

u form the set P(G I H, u). I 

Before proving Theorem A, recall that P ( G I H  ) = P(GI Hg) for every g E G. 

Hence, the N-blocks of G do not depend on the nilpotent injector that we choose. 

This is Theorem A of the introduction. 

(4.3) THEOREM: Let G be a solvable group, let N be a normM nilpotent sub- 

group of G and let B be an N-block of G. 

(i) There exists 0 E Irr(N) such that B C_ Irr(G[O). 

(ii) I f T  is the stabilizer of O in G, then there exists an N-block b o f t  such that 

b C_ Irr(T[O) and 

= {¢G1¢  c b}. 
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Proof: Let B be an N-block of G and fix H a nilpotent injector of G. To show 

that  all characters of B lie over some 0 E Irr(N),  it suffices to prove this fact for 

any two characters in B which are N-linked. Hence, assume that  X, ¢ E Irr(G) 

are N-linked. Then there exists r} E P(G I H) such that  

Ix, 7] # o # [¢, 71. 

Now, by definition of the good basis P(GI H), there exists c~ E I r r (H)  such that  

c~ a = r}. Since N is normal and nilpotent, we have that  N C_ H.  Let 0 E I r r (N)  

be an irreducible constituent of C~N. Now, since 

0 # 71 = Ix, = [xH, 

we have that  X lies over 0. For the same reason, ¢ lies over 0. This proves part  

(i). 

Let T = tG(0). By Theorem (2.1) (and replacing 0 by some G-conjugate if 

necessary), we may assume that  T N H is an injector of T and that  0 is H-good.  

Now, let X E B C_C_ I r r (GI0  ) and, by the Clifford correspondence, let ¢ E 

I r r (T I 0) be such that  CG = X. Let b be the N-block of ¢. By the first part ,  

notice that  b C_ I r r ( T I 0  ). We prove that  B = { c a  i~ b E b}. 

First, note that  the elements in P(GIH ) which are used to define N-linking 

between the elements of B necessarily lie in c f (GI0  ). By Theorem (4.2), the 

N-linking between the elements of B are made by the elements in P(G I H, 0). 
By the same reason, the N-linking between the elements of b are made by the 

elements in P ( T I T  A H, 0). By Lemma (3.4), we have that  

(TF It7 E P ( T I T N H ,  8)} = P(GIH, O ). 

Since [ # a  Ta] = [%tt] for T,p E c f (T I0  ) by the Clifford correspondence, the 

proof of Theorem A easily follows. I 

5. C h a r a c t e r s  o f  c e n t r a l  p r o d u c t s  

We shall need the following elementary result. 

(5.1) LEMMA: Suppose that H1,... ,Ha are subgroups of G and let Z = 

H1 • - . .  N H~. Assume that [Hi, Hi] = 1 for i ~ j and that 

GIZ  = H l l Z  × . . .  x H , J Z  
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is a direct product. Let A E Irr (Z)  and let Oi E Irr(Hi I A) for 1 < i < n. Then 

there exists a unique X E Ain=l Irr(G ] Oi). In fact, 

x ( h i - ' - h ~ ) = O l ( h l ) ' " O ~ ( h ~ )  

for hi E Hi. 

If  #: X --+ Y is a group isomorphism, recall tha t  I rr(Y) = {X" ] X E I r r (X)} ,  

where Xu(X ~) = X(x) for x E X.  

Proof of L e m m a  (5.1): Of course, we may assume that  n _> 2. Consider the 

map  ~-: Hi  x .- .  x H,~ -+ G given by ( h i , . . .  , h~) T = h i - - .  h~. Note tha t  ~- is a 

surjective group homomorphism.  Let N = ker(T). Call # the group isomorphism 

Hi x . . .  x H n / N  -+ G induced by T. Since Z C Z(G) because n > 2, note tha t  

(Oi)z = Oi(1)A. 

Suppose tha t  ¢ E Irr(G) lies over Oi for every i. Let ~ E I r r (Hi  x . . .  x H n / N )  

b e s u e h t h a t  ~u = ¢ .  T h e n ~  = ' y l  × " "  × %  for s o m e ~ i  E Irr(Hi) ,  and we 

deduce tha t  9 ( h l - - - h a )  = " y l ( h 0 ' ' " y , ( h , 0 .  Since ~bH, is a multiple of 0i, we 

easily deduce tha t  ~/i = 0i for each i. Therefore, ~P(hi • -- h , )  = 01 ( h i ) . . .  O,~(hn) 

and we see tha t  if such a ¢ exists, then it is unique. 

Now, let a = 01 × "'" x 0, .  I t  suffices to show tha t  N C_ ker(a).  Sup- 

pose tha t  ( h i , . . .  ,hn) E N which happens if and only if h i - - "  h,~ = 1. Then  

( h l Z ) - . .  (h,~Z) = Z, and we deduce tha t  hi E Z for all i. Now, 

a ( h l , . . .  , hn) = 01(hi)""" 0n(h~) = 01(1)" '"  0n(1)A(hl)""" A(h~) 

= a ( 1 ) A ( h l . . ,  h~) = a(1).  

Now, X = au  satisfies the conclusions of the lemma. I 

Under  the  hypothesis  and notat ion of Lemma (5.1), we will write 

X ~- 01 A . . .  A On = /~  ~,. 
i=1 

6. P r o o f  o f  T h e o r e m s  B a n d  C 

In several proofs th roughout  this paper,  we will distinguish two cases, according 

to whether  or not the nilpotent injector is contained in some proper normal  

subgroup of G. 
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(6.1) LEMMA: Suppose that H is a nilpotent injector of a solvable group G and 

assume that H c M ,~ G. Let P ( M  I H) be the good basis o fv c f (M I H) and let 

C be a complete set of  representatives of the orbits of NG(H) on its action on 

P ( M I H  ). Then {TIG[ ~ e d} = P ( G I H  ). 

Proof: The proof of this lemma follows by Lemma (3.2) of [5] and the uniqueness 

of good bases. (The fact that G = MNG(H)  in this case, follows from the Frattini 

argument.) II 

We are going to use the next lemma several times. 

(6.2) LEMMA: Let H be a 7r-subgroup of G and let Z be a central 7c'-subgroup 

of  G. I f  ~ C Irr(H) and A C Irr(Z), then 

1 × 

Proof: Let hz C H Z  = H x Z, where h E H and z ~_ Z. Then 

1 
(~ x )~)C(hz) - i g z i  Z (~ x )Q(ghzg-1). 

gCG 
g h z f - - I E H Z  

Now, by using that Z is central and the uniqueness of the 7r-~r' decomposition of 

elements, notice that 9(hz)g -1 E H Z  if and only if gh9 -1 E H. Hence, 

1 
× A)G(hz)  - IHZl  

9EG 
9hg--  l E f f  

1 1 g 
- -  = ) H  × a)(hz), 

as required. | 

We are going to use the construction of the nilpotent injectors due to A. Mann 

([4]). Suppose that G is solvable and let F be the Fitting subgroup of G. For 

every prime p dividing IFI, let Fp, be the p-complement of F and let Sp be any 

Sylow p-subgroup of Cc(Fp,) .  Then [Sp, Sq] = 1 for p 7~ q and 

plIfl 

is a nilpotent injector of G. 

If H is a subgroup of G, we denote by H c the normal closure of H in G. 
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(6.3) LEMMA: Suppose that G is a solvable group and assume that H is a 

nilpotent injector of G with H a = G. For every prime p dividing IHI, let Np = 

(Hp)CZ(G), where Hp is the Sylow p-subgroup of H. Then Hp is a Sylow p- 

subgroup of Np, [Np, Nq] = 1 for p ¢ q and 

G/Z(G) = H Np/Z(G) 
P 

is a direct product. 

Proof: This is Lemma (3.3) of [5]. | 

(6.4) LEMMA: Let G be a solvable group and assume that H is a nilpotent 

injector of G with H C = G. Let )~ C Irr(Z), where Z = Z(G). Let ap,~p c 

Irr(Np I A). Using the notation of Lemma (6.3), we have that Ap ap and Ap ~p 

lie in the same N-block of G if ap and ~p lie in the same N-block of Np for every 

p. 

Proof: First, note that every irreducible character which is N-linked to ap nec- 

essarily lies over )~ (by Theorem A, for instance). By repeating terms, we may 

assume that  ap and ~p are N-linked by a chain of characters of length not de- 

pending on p. By using this fact, note that it suffices to show that if OLp and tip 

are N-linked for each prime p, then Ap ap and Ap tip are N-linked. 
We claim that Hp x Zp, is a nilpotent injector of Np, where Zp, is the p- 

complement of Z. We know that H N Np is a nilpotent injector of Np ,~ G. Also, 

H N Np = Hp(Hp, N Np). Now, since l ip Np/Z is a direct product, we have that  
Hp, A Np C_ Zp,. Since it is clear that Zp, c Hp, N Np, the claim follows. 

Note that  by Lemma (5.1) we have that 

(A ~p/. = H(,~p/.,,. 
p P 

Suppose now that  7p c Irr(Hp). Now, 

(1) IA ~., (II ~.)cl-- [(A ~p)., II ~.] = EII(~.).p, [I  ~p] =H[(~.).p, ~.[ 
P P P P P P P 

By Lemma (3.5) (using that Hp is a Sylow p-subgroup of Np and the uniqueness 

of good bases), we have that there exists % C Irr(Hp) which is p-Fong in Np, 

such that  ap and/~p are irreducible constituents of (Tp x Ap,) Np, where Ap, is the 

p'-part of A. Now, by Theorem (3.6) of [5], it suffices to show that 

[A ~p, (II~p) G] t 0  ~ [A zp, (II ~p)Gl 
P P P P 
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Since C~p lies over 3~p × Ap,, in particular, we have that  (~p lies over ~,p. Hence 

[(C~p)H, , ")'p] • 0, and by (1) we deduce that  Ap c~p and Ap tip are N-linked. II 

V~Te are ready to prove Theorem B. 

(6.5) THEOREM: Let G be a solvable group, let F -- F(G) and let 0 E I r r (F)  be 

G-invariant. Then I r r (GI0  ) is an N-block of G. 

Proof: We argue by induction on IGI. Let X,¢ E I r r (GI0  ). We wish to prove 

that  X and ~ are connected by a chain of N-linked characters. 

Let H be a nilpotent injector of G and assume that  H _C M ,~ G, where 

IMI < IGI. By Lemma (6.1), note that  if % # E Irr(M) are N-linked, then every 

irreducible constituent of T c is N-linked with every irreducible constituent of #c .  

Since F = F ( M )  and 0 is M-invariant, the theorem easily follows by induction 

in this case. 

Prom now on, we assume that  H a = G and we use the notation of Lemma (6.3) 

and Lemma (6.4). Write Z = Z(G) and let ~ C Irr(Z) be the unique irreducible 

constituent of Oz. Assume that  Np < G for every prime p dividing IFI. Let )Cp 

be the unique irreducible constituent of XNp and let ¢p be the unique irreducible 

constituent of ~Np- Using the notation of Section 5, note that  :g = AF Xp and 

= AF %' 
By using Lemma (6.3), it is clear that  F(NF) = Fp × Zp,, where Zp, is the 

p-complement of Z and Fp is the Sylow p-subgroup of F. Also, FIB x Zp, is a 

nilpotent injector of Np (see the second paragraph of the proof of Lemma (6.4)). 

Write 0 = [ I  Op, where 0 F E Irr(Fp). Now, notice that  each XF and ~bp lie over 

Op because X and ¢ lie over 0, and thus, over O F. Also, if AF' is the pl-part  of 

A, note that  Xp and Cp lie over Ap, because X and ~b lie over /~ and thus over 

,~p,. Now, xp(hz) = )tp,(Z)Xp(h) for h E Hp and z • Zp, and it easily follows 

that  Xp (and Cp) lie over 0 F x Ap,. Since 0p x/~p, is G-invariant, by induction we 

deduce that  Xp and ¢p lie in the same N-block for every prime p. In this case, 

by applying Lemma (6.4), we are done. 

We may assume, therefore, that  Np = G for some prime p dividing IFI. In this 

case, the nilpotent injectors of G are P x Zp,, where P is a Sylow p-subgroup of 

G. Also, F = Fp x Z~,. 

Now, we apply the main results of [9]. If (~, ~ • Irr(G), we write 5 ~ p  ~ if there 

exists a Fong character a • I r r (P)  such that  (~ and ~ are irreducible constituents 

of a a .  (By Corollary (2.5) of [2], this provides the same p-linking as defined by 

M. Slattery in Section 2 of [9].) Since X and ¢ lie over Op, Fp = Op(G) and 

0p is G-invariant, by Theorem (2.8) of [9], it follows that  there exists a chain of 
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irreducible characters  ~-i E I r r (G)  

X = To ~--~p ~'1 ++p "'" <--~p % +-~p %+1 = 

and Fong characters  c~i E I r r (P )  such tha t  Ti and ~-i+t are irreducible const i tuents  

of c~i a for 0 < i < s. Thus  

[ a / G , a / ~ l l ¢ 0  f o r 0 < i < s - 1 .  

Now, by apply ing  L e m m a  (6.2), we have tha t  

[(a~ × Ap,) a,  (~+1 x a~,) a] = [ ( (~  × ,xp,)a)p×z~,, a~+l × ,xp,] 
1 1 a 

IZ~,l 

for 0 < i < s - 1. Now, we have tha t  there exist common  irreducible const i tuents  

~i E I r r (G)  of (ai  x Ap,) G and (c~i+l x Ap,) a for 0 < i < s - 1. Also, recall tha t  

X = To lies over a0 and Ap,, and therefore, Z lies over a0 x Ap,. By the same 

a rgument ,  ¢ is an irreducible const i tuent  of (c~s x Ap,) G. Now (using L e m m a  

(3.5)), we deduce tha t  X ,~0 ,~ l , . . .  , ~ s - l , ¢  is a chain of N-linked characters .  

This  proves the theorem.  | 

Next  is Theo rem C of the introduction.  Of course, it is the analog of the  

k (B) -con jec tu re  for N-blocks. 

(6.6) THEOaEM: Suppose that G is a solvable group, let B be an N-block of G 

and let H be a nilpotent injector of G. Then 

IBI _< la: HI. 

Proo~ We argue by induction on IGI. 
Let F = F (G) .  By Theorem A, there exists 0 c I r r (F )  and an N-block b of 

T = Ia(O) such tha t  B c_ I r r ( G I 0 ) ,  b c_ I r r ( T l 0  ) and B = {Ca I¢ e b}. By the 

uniqueness in the Clifford correspondence,  note tha t  IBI = Ibl. 
Let  J be  a ni lpotent  injector of T. By Theorem (2.1), there exists a G-conjugate  

K of H such tha t  K C~ T = J .  

Assume first t ha t  T < G. Then,  by the inductive hypothesis,  we will have t ha t  

IBI = Ibl <_ I T :  JI  = I T :  K n T I < ]G:  K I = IG:  H l, 

as desired. 

Hence, we may  assume tha t  T = G. In this case, by Theorem B we have tha t  

B = I r r ( G I 0  ). Then  IBI _< IG:  H I by Corollary B of [1]. | 
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7. N i l p o t e n t  injectors  in the  character  table  

If K is a conjugacy class of G and 7r is a set of primes, then K~ denotes the 

conjugacy class of x~, where x is any element of K.  

(7.1) LEMMA: I[ K is a conjugacy class of G, then the character table of G 

uniquely determines K~r. 

Proof: Let p be the set of prime divisors of the order of x E K.  By Higman 's  

theorem (8.21) of [3], we know that  the character table of G determines p. 

Certainly, we may assume tha t  r~ C_ p. 

We argue by induction of IPl- If ]p] = 0, then x = 1 and the lemma is trivially 

true. If rc = p, then K,~ = Kp = K and the lemma is also true. So, we may find 

a prime p E p -  rr. Let a = p -  {p}. If L = K~, then L~ = K~. By induction, 

therefore, it suffices to show tha t  the character table of G determines Ko.  

Now, let p R  C M C_ R be a maximal  ideal of the ring of algebraic integers R.  

Let T be any conjugacy class of p '-elements of G (all of them are determined by 

the character  table of G) and let y E T. By Theorem (8.20) of [3], we know tha t  

7' = K~ if and only if 

X(x) = X(Y) mod M 

for every X E Irr(G). Since the latter equation can be determined from the 

character  table, the proof  of the lemma is complete. II 

(7.2) LEMMA: Let K be the conjugacy class of x C G, where x is a rd-element. 

Let N be a normal rr-subgroup of G. Then 

Prook 

K C_ C G ( N )  iff E IX(x)12 = ExE'r~(G) IX(X)t 2 

NCker(x) 

By using the or thogonal i ty  relations, we have to prove tha t  

Assulne first tha t  

Then  

LCG(x)I 

I c ~ ( x ) l  

K c c c ( g )  i~ I C c / N ( X N ) I  - -  ICG(x)I 
- INI 

i C c / N ( X N ) l _  ICG(x)l 
INI 

_ _  - I C G ( x ) / C N ( X ) I  = I C c ( x ) N / N  I < I C c / N ( x N ) I  - ICc(x)l  
- ENf ' 

and we deduce tha t  C g ( x )  = N.  
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Conversely, assume that N C Cc.(x). Then y N  E C~ / N(x N)  if and only if 

xYN = x N  if and only if x y = xn  for some n 6 N. Since [x,N] = 1, x is a 

~r'-element and N is a ~v-group, we deduce that y N  E CG/N(xN)  if and only if 

• Y = X .  H e n c e  

CG/N(XN) = CC(x) /N,  

and the proof of the lemma is complete. | 

(7.3) COROLLARY: Let N be a normal 7r-subgroup of G. Then the character 

table of G determines O~(Cc(N)) .  

Proof." Let K1 , . . .  , Kt be the conjugacy classes of G consisting of 7r'-elements 

centralizing N. (These are determined by the character table of G by applying 

Higman's theorem (8.21) and Lemma (7.2).) Let 

_M-- N L = - ( K I , . . .  ,Kt) .  
L4G, 
K iCL  

We claim that M (which is determined by the character table of G) is exactly 

O~(Cc (N) ) .  Since K~ C_ O ' ( C G ( N ) ) ,  it is clear that M C_ O n ( C a ( N ) ) .  On the 

other hand, if L is a conjugacy class of C o ( N )  consisting of 7r'-elements, then L 

is contained in some K/. Therefore, M contains all conjugacy classes of C a ( N )  

consisting of 7d-elements. Hence C c ( N ) / M  is a 7r-group and therefore 

O'~(CG(N)) C M, 

as desired. | 

Next is Theorem D of the introduction. 

(7.4) COROLLARY: Let G be a solvable group and let H be a nilpotent injector 

of G. Then the character table of G determines the set 

O H ~ 
g 6 G  

and ]HI. 

Proof: We know that the character table of G determines Op(G) for every prime 

p. Hence, it also determines Fp,, the p-complement of F = F(G).  By Corollary 

(7.3), it also determines 0 p'(CG(Fp,)). Since 

I HI = I I  Op (Cc(Fp,))[p, 
~llF[ 
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the second part  easily follows. Also, since every conjugacy class of G meets H if 

and only if Kp C 0 p' (CG (Fp,)), tile proof of the corollary is complete by applying 

Lemma (7.1) and (7.3). . 

8. P r o o f  o f  T h e o r e m  E 

This is Theorem E of the introduction. 

(8.1) THEOREM: Let H be a nilpotent injector of a solvable group G. Suppose 

that A and # are linear characters of H. Then A G = 1 tG if and only i f  A = i zx for 

some x E NG(H) ,  

Proof: We argue by induction on IGI- Write F = F(G).  

By degrees and condition (D) of good bases, notice that  A G E P ( G I H  ). 

Suppose that  H C_ M <a G. Then G = M N a ( H )  by the Frattini argument.  

Also, (AG)M = ((AM)a)M is a sum of Na(H)-conjuga tes  of A M by Mackey's 

theorem. By the same argument, (#¢)M is a sum of Na(H)-con juga tes  of >M. 

By the second paragraph of this proof, note that  A M and #M (and therefore 

every Nc(H)-eon juga te )  lie in P ( M I H  ). Since (AC)M = (#a)M, by the linear 

independence of P ( M I H  ) it follows that  A M = (/,M)x for some x E N a ( H ) .  

a o w ~  

A M = ( t zx )  M 

and by induction we deduce that  A and #~ are NM(H)-conjugate.  This proves 

the theorem in this case. 

So we may assume that  H c = G. We use the notation of Lemma (6.3). Now, 

write 

A = H A p ,  
P 

where Ap E Irr(Hp) is the p-part  of A for the primes p dividing IFI. Also, write 

P 

By Lemma (3.4) of [5], we have that  

1 
((II izl-o_l II(&)- , ,  

P P 

where n is the number of different primes dividing [F[. Since A a = #a ,  we deduce 

that  
= 
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Then 

for every p dividing IFI. Since Hp is a Sylow p-subgroup of Np, by Isaacs' 

Corollary (6.1) of [2], we deduce that there exists xp E NN, (Hp) such that  

Since [Np, Nq] = 1 for q ¢ p, notice that 

H xp E Nc;(H) 
p 

is such that 

as desired. | 

~l~p Xp 

9. F i n a l  r e m a r k s  

If H is a nilpotent injector of a solvable group G, put 

GO = U Hg 
gea 

and let cf(G °) be the space of complex class functions G O --+ C. 

Is there some canonical basis of cf(G°)? In this section we discuss this and 

some other natural questions. 

First of all, it is clear that 

dim(el(G°)) = dim(vcf(GI H)).  

If ~o, 0 E cf(G °) to cf(G), we write 

1 [~,o]°=~ ~ ~(x)0(x). 
x c G  ° 

Note that 

[., .1o: cf(ao) x vcf(a I H) -+ c 

is a complex hermitian bilinear form. Fhrthermore, this form is non-degenerate. 

(See Section 3 of [8].) It follows that given the basis P(GIH) = {rh,...,rTk} 
there exists a unique basis I ( a  I H) = {~1,. . . ,  ~k} of cf(G °) satisfying 

[~o~, rs] ° = 5i0. 
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If qo E I(G ] H), then we denote by ~ the unique element in P(G] H) such tha t  

[ ~ ,  #]o = 5~,, 

for u c ~(Cl H). 
If X E cf(G), let us denote by X ° the restriction of X to G °. 

(9.1) THEOREM: Suppose that G is solvable and let H be a nilpotent injector 
of G. If  )l is a character of G, then 

X° = E d x ~  
~EI(G I H) 

for uniquely determined nonnegative integers dx~o. Furthermore, 

d ~  = [~, ,  X]. 

Proof: This is Theorem (3.1) and Lemma (3.2) of [81. I 

In some sense, it is reasonable to view the basis I ( G I H  ) as the set of  

"irreducible Brauer  characters" of G with respect to H,  being the integers dx~ , 
the "decomposi t ion numbers," and the elements of P(GIH ) as the "projective 

indecomposable  characters." 

First,  we see tha t  there is no possible "Fong-Swan" theorem for I(G] H). 

(9.2) Example: Suppose that  V is the direct product  of two groups of order 3. 

Let D be the dihedral group of order 8 and center Z. Then  D / Z  acts faithfully 

on V. Let G = VD be the semidirect product .  In this case, F = F(G)  = V x Z 

is also the nilpotent injector of G. Now, let 0 = 1y x )~, where 1 :fi ~ E Irr(Z) .  

It  is easy to check that  I r r ( G I 0  ) = {X}, where X is the unique extension of the 

unique nonlinear character  of D containing V in its kernel. It is easy to check 

tha t  0 c I ( G I H  ) is not  liftable. 

For ~o, tt C I(G]H),  we define the Car tan  invariants as 

xCIrr(G) 

(9.3) THEOREM: 
of  G. 

(a) The mat r ix  

Suppose that G is solvable and let H be a nilpotent injector 

D = (dx~o)xeirr(G),~Ei(GiH) 
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has rank II(G I H)I . Hence, C = Dt D is invertible. 

(b) I f [ '  :('Y~pO)~,oei(GiH) : C -1 and X , ¢  E Irr(G), then 

Proof: The matrix 

~o,Oel(Gl H) 

D = (dx(p)xCIrr(G),~cI(GIH) 

is the matrix of the linear surjective restriction map o: el(G) --~ cf(G °) with 

respect to the bases Irr(G) and I ( G I H  ). Then part (a) follows by elementary 

linear algebra. 

Now, write C = (%o)v ,oeI (a ln) .  Then 

@ 0 = [ ~ , ~ 0 ]  ° =  E dx°[~'X°]° 
xCIrr(G) 

= Z ° =  0 
xelrr(G) ,uel(GI H) uCI(GI H) 

This proves that 
F o = ( [ w , o ] ) ~ , o ~ * ( c l n  )- 

Part (b) easily follows from this. 1 

If X, ~b C Irr(G), note that 

1 

[x '~]°  = IG~ 
x(x)¢(x) 

xEG o 

can be read off from the character table of G by Corollary (7.4). It is natural to 

study the graph associated to the linking 

X ~ ¢  iff Ix, C]° ~ O. 

If G O is the set of p-regular elements of any finite group G (where p is a prime), 

then the connected components of this graph are the Brauer p-blocks of G. (See 

Theorem (3.19) of [7].) Also, if G o is the set of 7r-elements of a r-separable 

group G, then the connected components are the Isaacs-Slattery 7r-blocks. (See 

Theorem (2.2) of [9].) 
In our case, it is not true that the connected components of the graph are the 

N-blocks, and we will provide an example below. 
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Suppose that  B is an N-block of G and let H be a nilpotent injector of G. 

We know that  X and ~p are N-linked if and only if there exists ~ E I ( G I H  ) 

such tha t  dx~ ¢ 0 ~ d~o~. We may part i t ion I ( G I H  ) into blocks. If B is an 

N-block, then I ( B I H  ) = {~ E I (GIH)I  dx~ ~ 0 for some X E B}. Notice tha t  

the decomposi t ion matr ix  has a diagonal block form if we arrange the ordinary 

characters and the elements of I ( G I H  ) in N-blocks. Furthermore,  C (and F) 

have also diagonal block form. 

(9.4) LEMMA: Let X,O E Dr(G). I f[x,~] ° ¢ O, then X and ~ lie in the same 

N-block of G. 

Proof: By Theorem (9.3.b), we have that  there exist ~, 0 E I(GI H) such tha t  

dx¢doo~o ¢ O. 

Hence, ~ and 0 lie in the same N-block B of G by the comments  preceding 

the s ta tement  of this lemma. Hence, X ,¢  E B and the proof of the lemma is 

complete.  I 

(9.5) Example: Let S = SL(2, 3) and Z = Z(SL(2, 3)). Now, suppose tha t  S / Z  

acts faithfully on some GF(3)-module  V. Let G = VS  be the semidirect product .  

Note tha t  F (G)  = F = V x Z. Also, the nilpotent injectors of G are of the fbrm 

P x Z, where P E Syla(G). Hence G O = [-JgEa P~Z are the elements of G whose 

2-part  is in Z. 

Now, let 1 7L A E Ir r (Z)  and let 0 = l v  x A. Note tha t  0 is G-invariant, and 

therefore, tha t  h ' r (G 10 ) is an N-block by Theorem B. 

It is clear tha t  restriction of characters defines a bijection 

I r r ( G I 0  ) + I r r (S IA  ). 

Recall tha t  I r r (S  ] A) = {X1, X2, X3}.  These are faithful characters of S of degree 

2 vanishing on the elements of S of order 4. Now, let Irr(G I 0) = {:gl, :~2, , 3}  be 

their respective extensions. 

We claim tha t  each )~i vanishes off G °. To see this, let 9 E G - G °. Consider 

the isomorphism ~ : S ~ G / V  given by s ~ sV. Suppose that  o(g2V) = 2. Then  

g2V = ~(z) = zV,  where z is the unique element of order 2 of S. Then  92 = zv 

for some v E V. Hence 9 = 9293 = zvg3. Since v93 E V{g3} is contained in some 

Sylow 3-subgroup of G, we will conclude tha t  9 E G °, a contradiction. Therefore, 

we have tha t  o(g2V) = 4. Hence, o(gV) = 4 since there are not any other type  

of elements in SL(2, 3) whose 2-part is 4. Hence, we may write gV = sV, where 

s E S has order 4. Now, ~i(9) = ~i(9V) = X"i(sV) = Xi(s) = 0, as claimed. 
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Finally, suppose that  ~i is ++-linked to some ) /E  Irr(G). Assume tha t  )~i ¢ X. 

By L e m m a  (9.4) and Theorem B, we have that  X E Irr(G I 0 ). Hence, X = 25, for 
some j ¢ i. Now, by the last paragraph,  we have that  

0 # [£i, 2510 = [£i, 251 = 0. 

This is a contradiction. 
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